SEE ALSO: Boy Surface, Cross-Cap, Map Coloring, Möbius Strip Dissection, Nonoriescable Surface, Paradromic Rings, Prismatic Ring, Roman Surface, Tietze’s Graph
Ball, W. W. R. and Coxeter, H. S. M. MathematicalRecreations and Essays, 13th ed. New York: Dover, pp. 127-128, 1987.Bogomolny, A. ” tira de Möbius.”https://www.cut-the-knot.org/do_you_know/moebius.shtml.
Bondy, J. A. and Murty, U. S. R. GraphTheory with Applications. New York: North Holland, p. 243, 1976.
Bool, F. H.; Kist, J. R.; Locher, J. L.; e Wierda, F. M. C., Escher: sua vida e trabalho gráfico completo. New York: Abrams, 1982.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Dickau, R. “Spinning Möbius Strip Movie.”https://mathforum.org/advanced/robertd/moebius.html
Dodson, C. T. J. and Parker, P. E. A User’s Guide to Algebraic Topology. Dordrecht, Países Baixos: Kluwer, pp. 121 e 284, 1997.
40, S. M. C. Escher.Cobham, England: TAJ Books, 2003.Gardner, M. the Sixth Book of Mathematical Games from Scientific American., Chicago, IL: University of Chicago Press, p. 10, 1984.
Centro de geometria. “The Möbius Band.”https://www.geom.umn.edu/zoo/features/mobius/.
Henle, M. ACombinatorial Introduction to Topology. New York: Dover, p. 110, 1994.
Hunter, J. A. H. and Madachy, J. S. MathematicalDiversions. New York: Dover, pp. 41-45, 1975.
Kraichik, m. §8.4.3 in MathematicalRecreations. New York: W. W. Norton, pp. 212-213, 1942.
listagem e Tait. Vorstudien zur Topologie, Göttinger Studien, Pt. 10,1847.Madachy, J. S. Madachy’smathematical Recreations. New York: Dover, p. 7, 1979. ,Möbius, A. F. Werke, Vol. 2. P. 519, 1858.
Nordstrand, T. ” Moebiusband.”https://jalape.no/math/moebtxt.
Steinhaus, H. MathematicalSnapshots, 3rd ed. New York: Dover, pp. 269-274, 1999.
Underwood, M. ” Mobius Scarf, Klein Bottle, Klein Bottle ‘Hat’.”https://www.woolworks.org/patterns/klein.txt.
Wang, P. ” Renderings.”https://www.ugcs.caltech.edu/~peterw/portfolio/renderings/
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. London: Penguin, pp. 152-153 e 164, 1991.
CITE isto como: