Lásd még: Boy Surface, Cross-Cap, Map Coloring, Möbius Strip Dissection, Nonorientable Surface, Paradromic Rings, Prismatic Ring, Roman Surface, Tietze ‘ s Graph
Ball, W. W. R. and Coxeter, H. S. M. Mathematicalreations and Essays, 13th ed. New York: Dover, PP. 127-128, 1987.
Bogomolny, A. ” Möbius Strip.”https://www.cut-the-knot.org/do_you_know/moebius.shtml.
Bondy, J. A. és Murty, U. S. R. GraphTheory with Applications. New York: Észak-Holland, 243. o., 1976.
Bool, F. H.; Kist, J. R.; Locher, J. L.; and Wierda, F. M. C., Escher: élete és teljes grafikai munkássága. – Abrams, 1982.
Derbyshire, J. Prime: Bernhard Riemann és a matematika legnagyobb megoldatlan problémája. New York: Penguin, 2004.
Dickau, R. “Spinning Möbius Strip Movie.”https://mathforum.org/advanced/robertd/moebius.html
Dodson, C. T. J. és Parker, P. E. A user ‘ s Guide to algebrai Topology. Dordrecht, Hollandia: Kluwer, 121.és 284. oldal, 1997.
negyven, S. M. C. Escher.Cobham, Anglia: TAJ Books, 2003.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American., Chicago, IL: University of Chicago Press, p. 10, 1984.
geometria Központ. “A Möbius Zenekar.”https://www.geom.umn.edu/zoo/features/mobius/.
Henle, M. Akombinatoriális Bevezetés a topológiába. New York: Dover, p. 110, 1994.
Hunter, J. A. H. and Madachy, J. S. MathematicalDiversions. New York: Dover, PP. 41-45, 1975.
Kraitchik, M. §8.4.3 a MathematicalRecreations. New York: W. W. Norton, PP. 212-213, 1942.
Felsorolás és Tait. Vorstudien zur Topologie, Göttinger Studien, Pt. 10,1847.
Madachy, J. S. Madachy ‘ mathematical Recreations. New York: Dover, 7. o., 1979.,
Möbius, A. F. Werke, Vol. 2. 519. o., 1858.
Nordstrand, T. ” Moebiusband.”https://jalape.no/math/moebtxt.
Steinhaus, H. MathematicalSnapshots, 3rd ed. 1999-ben, 269-274.
Underwood, M. “Mobius sál, Klein Palack, Klein Palack “kalap”.”https://www.woolworks.org/patterns/klein.txt.
Wang, P. ” Renderings.”https://www.ugcs.caltech.edu/~peterw/portfolio/renderings/
London: Penguin, PP. 152-153 és 164, 1991.
: