Véase también: Boy Surface, Cross-Cap, Map Coloring, Möbius Strip Dissection, Nonorientable Surface, Paradromic Rings, Prismatic Ring, Roman Surface, Tietze’s Graph
Ball, W. W. R. and Coxeter, H. S. M. MathematicalRecreations and Essays, 13th ed. Nueva York: Dover, PP. 127-128, 1987.
Bogomolny, A. » Möbius Strip.»https://www.cut-the-knot.org/do_you_know/moebius.shtml.
Bondy, J. A. and Murty, U. S. R. GraphTheory with Applications. New York: North Holland, p. 243, 1976.
Bool, F. H.; Kist, J. R.; Locher, J. L.; and Wierda, F. M. C., Escher: su vida y obra gráfica completa. New York: Abrams, 1982.
Derbyshire, J. Prime Obsession: Bernhard Riemann and the Greatest Unsolved Problem in Mathematics. New York: Penguin, 2004.
Dickau, R. » Spinning Möbius Strip Movie.»https://mathforum.org/advanced/robertd/moebius.html
Dodson, C. T. J. and Parker, P. E. A User’s Guide to Algebraic Topology. Dordrecht, Países Bajos: Kluwer, págs. 121 y 284, 1997.Forty, S. M. C. Escher.Cobham, England: Taj Books, 2003.
Gardner, M. The Sixth Book of Mathematical Games from Scientific American., Chicago, IL: University Of Chicago Press, p. 10, 1984.
Centro de geometría. «The Möbius Band.»https://www.geom.umn.edu/zoo/features/mobius/.
Henle, M. ACombinatorial Introduction to Topology. New York: Dover, p. 110, 1994.
Hunter, J. A. H. and Madachy, J. S. MathematicalDiversions. Nueva York: Dover, PP. 41-45, 1975.
Kraitchik, M. §8.4.3 en MathematicalRecreations. Nueva York: W. W. Norton, PP. 212-213, 1942.
Listing y Tait. Vorstudien zur Topologie, Göttinger Studien, Pt. 10,1847.
Madachy, J. S. Madachy’sMathematical Recreaciones. New York: Dover, p. 7, 1979.,
Möbius, A. F. Werke, Vol. 2. P. 519, 1858.
Nordstrand, T. » Moebiusband.»https://jalape.no/math/moebtxt.
Steinhaus, H. MathematicalSnapshots, 3rd ed. Nueva York: Dover, pp 269-274, 1999.
Underwood, M. «Mobius Scarf, Klein Bottle, Klein Bottle ‘Hat’.»https://www.woolworks.org/patterns/klein.txt.
Wang, P. » Renderings.»https://www.ugcs.caltech.edu/~peterw/portfolio/renderings/
Wells, D. The Penguin Dictionary of Curious and Interesting Geometry. Londres: Penguin, PP. 152-153 and 164, 1991.
CITE esto como: